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Abstract
It is well known that the analysis of a relativistic n-body problem invariant
under the transformations of the Poincaré group and involving only one time
has only been done for n = 1. For n > 1 one uses the second quantization
formalism of field theory. In this paper we state it in the ordinary space time
coordinates associated with the n-bodies as Dirac did in the one body case. We
apply the formalism first to the two-body problem and have a development of
the Hamiltonian in terms of powers of (1/c2), that allows us to determine the
spectra of bottomonium and compare with the experimental results.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

In non-relativistic quantum mechanics the passage from the single-body to a many-body
problem, for non-interacting particles, is a trivial summation of the single-body Hamiltonians.

In the relativistic case if we want to use a similar procedure and keep the problem invariant
under Poincaré transformations, we have to deal with the times associated with each body.

In this paper we first show that for a system of n-particles with the same mass and spin
(1/2)we can, with the help of appropriate matrices, formulate the many-body problem, in the
centre-of-mass reference frame, with the appearance of only one time.

While our procedure applies to arbitrary n-body problems, the algebra increases as a
function of n. Thus, the simplest problem we can attack is the two-body problem for which
we give a procedure to determine its spectra starting from its non-relativistic formulation.

The particular case to which we have applied our formalism is the quark–antiquark system
of the bottom type for which an interaction potential is given in the literature. We discuss
first a variational procedure from which we determine the non-relativistic eigenvalues and
eigenstates and use the latter to determine the relativistic correction to order (1/c2).

We finally state the problem when the two masses are different and indicate possible
applications to other systems.

0305-4470/03/082163+12$30.00 © 2003 IOP Publishing Ltd Printed in the UK 2163
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2. A formulation of the relativistic many-body problem

A many-body problem usually starts with the case of non-interacting particles and, for
simplicity, of the same mass.

In the non-relativistic case the wave equation can be written as(
1

2m

∑
s

p2
s

)
ψ = ih̄

∂ψ

∂t
. (1)

In the relativistic case, and taking particles of spin 1
2 , an obvious generalization from the

Dirac equations would be
n∑
s=1

(
γ µs pµs + 1

)
ψ = 0 (2)

where repeated indices µ are summed with respect to the values µ = 0, 1, 2, 3 and the index
µ = 0 refers to the time, and where we use the units h̄ = m = c = 1. The pµs is a covariant
energy–momentum four vector and γ µs are the contravariant matrices related to

γ 0
s = βs γ is = βsαis i = 1, 2, 3 s = 1, 2, . . . , n (3)

with β and α having the usual definitions [1].
Equation (2) is certainly an invariant of the Poincaré group but is not satisfactory because

it introduces n times through p0s = −i∂/∂x0s .
How can we find a many-body problem, still invariant under the Poincaré group but, in

an appropriate system of reference, involving only one time [2, 3]?
We start denoting by uµ a unit time-like 4-vector which means that there is a reference

frame in which it takes the form

(uµ) = (1, 0, 0, 0). (4)

With the help of the 4-vector (4), we can define the Lorentz scalars [3]

� =
n∏
r=1

(
γ µr uµ

)
�s = (

γ µs uµ
)−1

� (5)

where
(
γ
µ
s uµ

)−1
eliminates the corresponding term in � and �s is still in product form.

We now propose that instead of equation (2) we have the Lorentz invariant one [3]
n∑
s=1

�s
(
γ µs pµs + 1

)
ψ = 0. (6)

With the help of the total energy–momentum 4-vector

Pµ =
n∑
s=1

pµs µ = 0, 1, 2, 3 (7)

we show that, in the frame of reference where (uµ) = (1, 0, 0, 0), equation (6) takes the form[
�0

n∑
s=1

p0s +
n∑
s=1

�0
s (γs · ps + 1)

]
ψ = 0 (8)

where boldface letters mean three-dimensional vectors and

�0 ≡
n∏
r=1

γ 0
r �0

s ≡ (
γ 0
s

)−1
�0. (9)
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Multiplying equation (8) by �0 and using equations (3), (7) and (9) we obtain[
−P 0 +

n∑
s=1

(αs · ps + βs)

]
ψ = 0 (10)

where we used a metric in which P0 = −P 0 and the latter is the zero component of Pµ, i.e.
the total energy of the system.

We would like equation (6) to represent the system of particles where the centre of mass
is at rest and this can be achieved if we define

uµ = Pµ(−PτP τ )− 1
2 (11)

as when Pi = 0, i = 1, 2, 3, we have ui = 0, u0 = 1.
For interactions depending on the relative coordinates

xstµ ≡ xµs − xµt (12)

we can define

xst⊥µ ≡ xstµ − (
xstτ u

τ
)
uµ (13)

and thus suppressing the indices s, t we have that

r2 ≡ (
x⊥µx

µ

⊥
)

(14)

is a Poincaré invariant and this is also true for any function of it.
We wish to end this section by indicating that there are several ways in which the relativistic

many-body problem can be formulated. As an example we mention the paper of J Carbonell
et al on ‘Explicit covariant light-front dynamics and relativistic few-body systems’ given
in [4].

3. The Hamiltonian of the two-body problem

We shall consider our equations in the centre-of-mass frame of reference and use primes for
cgs units to get

[(c′α1 · p′
1 +m′c′2β1) + (c′α2 · p′

2 +m′c′2β2) + V (r ′)]� = E′� (15)

where for the potential we use one frequently proposed for the quark–antiquark system of the
form [5]

V (r ′) = q ′r ′ − b′2

r ′ (16)

where the term (−b′2/r ′) is due to a one gluon exchange (similar to the Coulomb interaction
for the one photon exchange of the electron–positron system) while q ′r ′ is the potential that
provides the confinement. As in the centre-of-mass frame the total momentum P′ = p′

1 +
p′

2 = 0 we can write p′
1 = −p′

2 = p′ with p′ = 1
2 (p

′
1 − p′

2) so equation (15) becomes

[c(α1 − α2) · p + 2c2(β1 + β2) + V (r)]� = E� (17)

where we used units in which µ′ ≡ (m′/2), h̄ and b′ equal to 1 so we have

c = h̄c′

b′2 V (r) = qr − 1

r
q = q ′h̄4

µ′2b′6 (18)

where c is the velocity of light in the units we are now using.
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As we are discussing a two-body problem α1,α2, β1, β2 have the form

α1 =
(

0 σ1

σ1 0

)
⊗
(
I 0
0 I

)
α2 =

(
I 0
0 I

)
⊗
(

0 σ2

σ2 0

)

β1 =
(
I 0
0 −I

)
⊗
(
I 0
0 I

)
β2 =

(
I 0
0 I

)
⊗
(
I 0
0 −I

)
.

(19)

Introducing these direct products explicitly in equation (17) we obtain

O



ψ1

ψ2

ψ3

ψ4


 ≡


2c




0 s1 · p −s2 · p 0
s1 · p 0 0 −s2 · p

−s2 · p 0 0 s1 · p
0 −s2 · p s1 · p 0




+ 4c2



I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −I


 − [E − V (r)]




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1








ψ1

ψ2

ψ3

ψ4


 = 0 (20)

where we have replaced σt , t = 1 or 2 by spin matrices

s1 = 1
2σ1 s2 = 1

2σ2. (21)

4. The second-order equations for the two-body problem

Equation (20) can be written in the form

2c

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ2

ψ3

)
=
(
E − V (r)− 4c2 0

0 E − V (r) + 4c2

)(
ψ1

ψ4

)
(22)

2c

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ1

ψ4

)
= [E − V (r)]

(
ψ2

ψ3

)
(23)

Dividing equation (23) by [E − V (r)] and substituting in equation (22), we obtain with
the use of the commutator

[(st · p), (E − V )−1] = 1

i
(E − V )−2(st · r)

1

r

dV

dr
(24)

and the properties of the Pauli matrices

σiσj = δij + iεijkσk (25)

that equations (22) and (23) reduce to[
1

i
4c2(E − V )−2 1

r

dV

dr

]

×
[

1
2 (r · p) + i

2 (S · L) 1
2 (r · p) + i

2 (S · L)− (S · r)(S · p)
1
2 (r · p) + i

2 (S · L)− (S · r)(S · p) 1
2 (r · p) + i

2 (S · L)

]

×
[
ψ1

ψ4

]
+

4c2

(E − V )

[
1
2p

2 1
2p

2 − (S · p)2

1
2p

2 − (S · p)2 1
2p

2

][
ψ1

ψ4

]

=
[
E − V − 4c2 0

0 E − V + 4c2

][
ψ1

ψ4

]
(26)

where S = (s1 + s2) and L = (r × p) are, respectively, the total spin and total orbital angular
momentum.
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5. The relativistic correction to order (1/c2)

We note first that in cgs units the rest energy of our system is 2m′c′2 = 4µ′c′2 where µ′ is the
reduced mass. In our units h̄ = µ′ = b′ = 1 the rest energy is 4c2 and the total energy is then

E = 4c2 + ε (27)

with ε being the binding energy we want to determine.
We now introduce the short hand notation

a ≡ 1

2
(r · p) +

i

2
(S · L) b ≡ 1

2
(r · p) +

i

2
(S · L)− (S · r)(S · p) (28)

u ≡ 1

2
p2 v ≡ 1

2
p2 − (S · p)2 (29)

w ≡ [E − V (r)] = [4c2 + ε − V (r)] (30)

which allow us to write equation (26) as{
−4ic2w−2r−1(dV/dr)

[
a b

b a

]
+ 4c2w−1

[
u v

v u

]}(
ψ1

ψ4

)

=
{
w

[
1 0
0 1

]
− 4c2

[
1 0
0 −1

]}(
ψ1

ψ4

)
. (31)

The left-hand side of equation (31) can now be diagonalized with the help of the matrices

U = 1√
2

(
1 −1
1 1

)
U−1 = 1√

2

(
1 1

−1 1

)
(32)

as

U−1

[
a b

b a

]
U =

[
a + b 0

0 a − b

]
U−1

[
u v

v u

]
U =

[
u + v 0

0 u− v

]
(33)

while on the right-hand side the similarity transformation has no effect on the unit matrix but
we have

U−1

[
1 0
0 −1

]
U = −

[
0 1
1 0

]
. (34)

Thus writing(
ψ1

ψ4

)
= U

(
ψ+

ψ−

)
(35)

and multiplying equation (31) by U−1 we get the pair of equations{
−4ic2w−2 1

r

dV

dr
(a + b) + 4c2w−1(u + v)− w

}
ψ+ = 4c2ψ− (36)

{
−4ic2w−2 1

r

dV

dr
(a − b) + 4c2w−1(u− v)−w

}
ψ− = 4c2ψ+. (37)

Using equation (36) to expressψ− in terms ofψ+ and substituting in equation (37) we get{[
−4ic2w−2 1

r

dV

dr
(a − b) + 4c2w−1(u− v)− w

]

×
[
−4ic2w−2 1

r

dV

dr
(a + b) + 4c2w−1(u + v)− w

]}
ψ+ = 16c4ψ+. (38)
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We note that a, b, u, v do not depend on c but w does, and negative powers of it can be
developed in a series of inverse powers of c2 as

4c2w−1 = 1 +
∞∑
m=1

(−1)m
[
ε − V (r)

4c2

]m
(39)

4c2w−2 = −
∞∑
m=1

(−1)m
m[ε − V (r)]m−1

(4c2)m
. (40)

Keeping only the (1/c2) term we finally get

Hψ+ ≡
{[
p2

2
+ V (r)

]
− 1

8c2

[
dV

dr

∂

∂r
− 1

r

dV

dr
(S · L)

+ (S · p)2[p2 − (S · p)2]

]
− p4

32c2

}
ψ+ = εψ+. (41)

We note that the Hamiltonian in equation (41) has the term (S · p)2[p2 − (S · p)2], which
vanishes as we shall proceed to show.

We can take the third direction of our reference frame parallel to that of the vector p and
in this case

(S · p)2[p2 − (S · p)2] = p2S2
3

[
p2 − S2

3p
2
] = p4S2

3

[
1 − S2

3

]
(42)

and as we also have that for s = 0, S3 = 0 while for s = 1 we obtain

S3 =

1 0 0

0 0 0
0 0 −1


 1 =


1 0 0

0 1 0
0 0 1


 (43)

we see that

S2
3

[
1 − S2

3

] =

1 0 0

0 0 0
0 0 1




0 0 0

0 1 0
0 0 0


 = 0. (44)

Thus equation (41) reduces to

Hψ+ =
{[
p2

2
+ V (r)

]
− 1

8c2

[
dV

dr

∂

∂r
− 1

r

dV

dr
(S · L)

]
− p4

32c2

}
ψ+ = εψ+. (45)

Note the difference between this problem and the corresponding equation for the hydrogen
atom in atomic units that we write below [6]

Hh� ≡
{[

1

2
p2 − 1

r

]
+

1

c2

[
−p

4

8
− 1

4r2

∂

∂r
+

1

2r3
(L · S)

]}
� = ε�. (46)

The spins in equation (45) are s = 0, 1 while in equation (46) they are s = 1
2 .

6. The binding energies of the quark–antiquark system

We need first to obtain eigenstates of the non-relativistic part of equation (45)

Hqψ =
(

1

2
p2 + qr − 1

r

)
ψ = εψ. (47)

This will be done variationally employing the discrete basis of Sturm–Coulomb states.
Having then the eigenvalues and eigenstates of equation (47) we use the latter in first-order
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Table 1. Experimental spectra of bottomonium and our non-relativistic results (in GeV).

Experimental Theoretical

l = 0, j = 1
ϒ(2S)−ϒ(1S) 0.562 96 0.573 621
ϒ(3S)−ϒ(1S) 0.894 9 0.928 582
ϒ(4S)−ϒ(1S) 1.119 7 1.217 7
ϒ(10 860) −ϒ(1S) 1.404 7 1.471 97
ϒ(11 020) −ϒ(1S) 1.558 7 1.703 66

l = 1, j = 0
χbo(1P)−ϒ(1S) 0.399 6 0.467 9509
χbo(2P)−ϒ(1S) 0.771 8 0.833 7729

l = 1, j = 1
χb1(1P)−ϒ(1S) 0.432 4 0.467 9509
χb1(2P)−ϒ(1S) 0.794 9 0.833 7729

l = 1, j = 2
χb2(1p)−ϒ(1S) 0.452 3 0.467 9509
χb2(2p)−ϒ(1S) 0.808 2 0.833 7729

perturbation to get the contribution up to (1/c2) terms of the relativistic correction. For details
of this calculation you can look at the appendix of this paper.

In the case of bottomonium we use the potential of equation (16) with the values given in
the literature [5]

q ′ = σ

h̄c′ σ = 0.182 (GeV)2 (48)

b′2 = 4

3
αsh̄c

′ with αs = 0.39 so that b′2 = (0.52)h̄c′ (49)

µ′ = 2.1 GeV. (50)

The only parameter in equation (47) is q defined by equation (18) and which takes the
value

q = q ′h̄4

µ′2b′6 = 0.2935. (51)

In figure 1 we give the energy levels of the non-relativistic problem compared with
experiment [7]. The agreement is reasonable as we see numerically in table 1.

The relativistic correction calculated as indicated above gives only a small value and
always in the direction that approximates the experimental result as shown in table 2.

7. The Hamiltonian of the two-body problem when the masses are different

The analysis of this case is very similar to that which we carried in section 3 when the masses
were equal. Thus, we only present the result

H =
(
p2

2µ
+ V

)
− 1

2m2
1c

2

[
1

2

dV

dr

∂

∂r
− 1

r

dV

dr
(s1 · L)

]

− 1

2m2
2c

2

[
1

2

dV

dr

∂

∂r
− 1

r

dV

dr
(s2 · L)

]
− p4

8µc2

(
1

m2
1

+
1

m2
2

− 1

M+µ

)
(52)
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Energy (GeV) Bottomonium

1+

|(0,1)1>

0−

|(1,1)0>

1−

|(1,1)1>

2−

|(1,1)2>

j:

Angular and
spin part :

ϒ (1S)

ϒ (2S)

ϒ (3S)

ϒ (4S)

ϒ (10860)

ϒ (11020)

χb0 (1P)

χb0 (2P)

χb1 (1P)

χb1 (2P)

χb2 (1P)

χb2 (2P)

Figure 1. We give using full lines the experimental energy levels of bottomonium putting in the
abscissa their total angular momentum. With dashed lines we give the non-relativistic theoretical
results and indicate below the abscissa the ket |(l, s)j 〉 with l, s, j being, respectively, the orbital,
spin and total angular momentum. Below each experimental level we indicate the orbital angular
momentum in spectroscopic notation. The spin is always 1. We give only the excitation, i.e. the
energy of the level minus the energy of ϒ(1S), so the experimental and theoretical results coincide
at zero value.

where we still use units in which µ′ = b′2 = h̄ = 1 and the massesm1,m2 of the two particles
are given by

m1 = m′
1

µ′ m2 = m′
2

µ′ M+ = m1 +m2 µ = m1m2

m1 +m2
. (53)

Equation (52) reduces to equation (45) when m1 = m2 = 2, µ = 1,M+ = 4.
We plan to apply equation (52) to further calculations involving quark–antiquarks of

different masses.
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Table 2. Experimental spectra of (ϒ) states of bottomonium and our relativistic corrections
(in GeV).

Experimental Theoretical Relativistic correction

l = 0, j = 1
ϒ(2S)−ϒ(1S) 0.562 96 0.573 621 −0.001 879 27
ϒ(3S)−ϒ(1S) 0.894 9 0.928 582 −0.000 821 763
ϒ(4S)−ϒ(1S) 1.119 7 1.217 7 −0.000 487 554
ϒ(10 860) −ϒ(1S) 1.404 7 1.471 97 −0.000 343 503
ϒ(11 020) −ϒ(1S) 1.558 7 1.703 66 −0.000 271 208

8. Conclusions

We developed a formalism that is invariant under the Poincaré group for the n-body system, and
allows an expansion in powers of (1/c2) of the Hamiltonian starting with the non-relativistic
ones. We discuss in detail the situation when n = 2, and apply our results to derive the
spectrum of bottomonium and compare it with the experimental data.
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Appendix. Eigenvalues and eigenstates of the non-relativistic problem

Our first objective will be to obtain solutions of equation (47) and, in particular the values of
ε, using a Ritz variational method. For this purpose we need a complete set of solutions
of a quantum mechanical problem that can serve as the variational basis. An obvious
basis is that of a Coulomb problem but this is not complete if we use only discrete levels,
as there is also a contribution from states in the continuum. Thus, we turn to harmonic
oscillator states but these converge slowly for the Hamiltonian of equation (45). We then
decided on the Sturm–Coulomb states Rnl(r) which satisfy the equation [8]:

p2Rnl(r) =
(
ν

r
− 1

4

)
Rnl(r) (A.1)

with

ν = n + l + 1 p2 = − 1

r2

d

dr
r2 d

dr
+
l(l + 1)

r2
. (A.2)

The functions Rnl(r) then take the form

Rnl(r) =
√

n!

(n + 2l + 1)!
rl e−r/2L2l+1

n (r) (A.3)

where L2l+1
n is a Laguerre polynomial.

These states are orthonormal in a differential radial volume r dr but not in the physical
one r2 dr so we have∫ ∞

0
Rnl(r)Rn′l(r)r

2 dr ≡ 〈n′l|nl〉 = b(n′l, nl, 2) (A.4)

with the b defined below.
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In equation (A.1) we made a definite choice of parameters for the Rnl(r) and if we want
to continue using them we can introduce the parameter in the Hq of equation (47) by the
substitution [8]

p → λp r → r
λ

(A.5)

so we have as our Hamiltonian

Hq = 1

2
λ2p2 +

qr

λ
− λ

r
. (A.6)

For the variational Ritz method we need Hamiltonian matrices (to be denoted by a bold
face capital letter) whose elements are calculated with respect to the states Rnl(r), i.e.

Hql =
∥∥∥∥
∫ ∞

0
Rn′l(r)

[(
1

2
λ2p2 +

qr

λ
− λ

r

)
Rnl(r)

]
r2 dr

∥∥∥∥ . (A.7)

Making use of equation (A.7), where we introduce the upper index l in Hq , as the orbital
angular momentum is an integral of motion and thus the matrix representation is characterized
by its eigenvalue l(l + 1), and we note that p2 is given by equation (A.2),

Hql =
∥∥∥∥
∫ ∞

0
Rn′l(r)

{[
1

2
λ2

(
ν

r
− 1

4

)
+
qr

λ
− λ

r

]
Rnl(r)

}
r2 dr

∥∥∥∥
=
∥∥∥∥
(

1

2
λ2ν − λ

)
b(n′l, nl, 1)− 1

8
λ2b(n′l, nl, 2) +

q

λ
b(n′l, nl, 3)

∥∥∥∥ (A.8)

where

b(n′l, nl, k) ≡
∫ ∞

0
Rn′l (r)Rnl(r)r

k dr (A.9)

that was calculated explicitly in [9].
Our first objective is to determine the value of the parameter λ which would give the best

approximation to the actual energies ε in equation (47).
For this purpose we take the matrix element in equation (A.8) where n = n′ = 0 which

gives the value

F(λ, q) ≡
[

1

2
λ2(l + 1)− λ

]
− 1

8
λ2(2l + 2) +

q

λ
(2l + 3)(2l + 2) (A.10)

because

b(0l, 0l, 1) = 1 b(0l, 0l, 2) = (2l + 2) b(0l, 0l, 3) = (2l + 3)(2l + 2). (A.11)

The best value of λ we can choose is the one that minimizes F(λ, q) which will be given
by

dF

dλ
= λ(l + 1)− 1 − 1

4
λ(2l + 2)− q

λ2
(2l + 3)(2l + 2) = 0 (A.12)

and it implies the cubic equation
1
2λ

3(l + 1)− λ2 − q(2l + 3)(2l + 2) = 0. (A.13)

For any numerical value of q we have then a corresponding real value λ̄ ≡ λ(q). We shall
later consider particular numerical cases. In the matrix of equation (A.8) we have to replace
λ by λ̄ and call it H̄ql , and denote by Nl the overlap matrix

Nl = ‖b(n′l, nl, 2)‖. (A.14)

Our variational procedure for determining the energies is through the matrix

H̄ql − εNl (A.15)
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where ε is the value appearing in the Schrödinger equation (47). Thus, the energies ε can be
determined through the secular equation

det[H̄ql − εNl] = 0 (A.16)

where det stands for the determinant of the matrix indicated.
Equation (A.16) has numerical limitations as the computer capacity of solving algebraic

equations of high order is limited. Thus, we turn to an equivalent procedure. For this we note
that Nl , being a symmetric real matrix, can be diagonalized and thus we can write

Nl = ÕlDOl (A.17)

where Ol is an orthogonal matrix and Õl is its transposed matrix, while D is a diagonal matrix
all of whose elements turn out to be positive and different from zero.

Thus equation (A.15) can be replaced by

Qql − εI where Qql ≡ D−1/2OlH̄qlÕlD−1/2 (A.18)

where I is the unit matrix of the same dimension as the others. Then we can obtain the values
of ε by diagonalizing the matrix Qql in equation (A.18) for given values of q and l [10]. This
ε is dimensionless but we can obtain it in terms of GeV by the factor in equation (18), i.e.

ε ′ =
(
µ′b′4

h̄2

)
ε. (A.19)

Having outlined the procedure for obtaining the values of ε, we proceed to find the
eigenvectors corresponding to the eigenvalues. We note then that the process of diagonalization
for Qql can be carried out by a matrix R from which, by a similarity transformation, we get a
diagonal matrix ∆, i.e.

R−1QqlR = ∆ (A.20)

where ∆gives the non-relativistic eigenvalues of table 1and figure 1. Multiplying this equation
by R we see from equation (A.18) that we obtain a system of linear algebraic equations

D−1/2OlH̄qlÕlD−1/2R = R∆. (A.21)

Multiplying both sides of this equation by ÕlD−1/2 and using equation (A.17) we obtain

(Nl)−1H̄ql(ÕlD−1/2R) = ÕlD−1/2R∆ (A.22)

and multiplying by Nl we have

H̄ql(ÕlD−1/2R)− NlH̄ql(ÕlD−1/2R)∆ = 0. (A.23)

Thus, the eigenvectors of H̄ql are the columns of the matrix ÕlD−1/2R, where Õl and D
are obtained from the diagonalization of Nl while R is determined though the diagonalization
of Qql as in equation (A.20).

Once we have the eigenvectors, which we will denote as

(ÕlD−1/2R)A = ÕlD−1/2rA ≡ cA (A.24)

corresponding to the eigenvalue εA, we can pass to the eigenstates with the help of the following
column vector

α =




|1〉
|2〉
...

|n〉
...

|N〉




(A.25)
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where the kets are a short hand notation for

|n + 1〉 = Rnl(r) (A.26)

and in our analysis the number of kets that we considered was N = 100.
The eigenstates corresponding to the eigenvalue εA take the form

c̃Aα =
N∑
n=1

cAn|n〉. (A.27)

These are the eigenstates with respect to which we take the expectation value of the (1/c2)

part of the Hamiltonian in equation (45) to give the values that appear in table 2.
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